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Abstract

We have investigated the accuracy and stability of an implicit numerical scheme for solving the fractional diffusion

equation. This model equation governs the evolution for the probability density function that describes anomalously

diffusing particles. Anomalous diffusion is ubiquitous in physical and biological systems where trapping and binding

of particles can occur. The implicit numerical scheme that we have investigated is based on finite difference approxima-

tions and is straightforward to implement. The accuracy of the scheme is O(Dx2) in the spatial grid size and O(Dt1+ c) in

the fractional time step, where 0 6 1 � c < 1 is the order of the fractional derivative and c = 1 is standard diffusion. We

have provided algebraic and numerical evidence that the scheme is unconditionally stable for 0 < c 6 1.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the accuracy and stability of an implicit numerical solution scheme for the frac-

tional diffusion equation (see for example [1,2])
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with 0 < c 6 1. In this equation the expression
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o
�cf
ot�c

¼ 1

C cð Þ

Z t

0

f ðsÞ
t � sð Þ1�c ds ð2Þ
denotes the Riemann–Liouville fractional integral of order c of the function f(t) and
o1�cf
ot1�c

¼ d

dt
1

C cð Þ

Z t

0

f ðsÞ
t � sð Þ1�c ds ð3Þ
denotes the Riemann–Liouville fractional derivative of order 1 � c of the function f(t). The fractional dif-

fusion equation, Eq. (1), which has been derived from continuous time random walks (see for example [1],

and references therein) is the evolution equation for the probability density function that describes particles

diffusing with mean square displacement
hx2ðtÞi � tc: ð4Þ

Standard diffusion corresponds to c = 1 and the parameter range 0 < c < 1 corresponds to anomalous
sub-diffusion. Related equations of importance are the fractional Fokker–Planck equation [3] for anom-

alous diffusion in an external field, and the fractional reaction–diffusion equation [4,5] for anomalous

diffusion with sources and sinks. The theoretical justification for the fractional diffusion equation, for

modelling systems with anomalous diffusion, together with the abundance of physical and biological

experiments demonstrating the prevalence of anomalous sub-diffusion (see for example [6–10]) has led

to an intensive effort in recent years to find accurate and stable methods of solution that are also straight-

forward to implement.

Numerous numerical methods have been employed to solve fractional order ordinary differential equa-
tions [11–19] but relatively few have been developed for fractional order partial differential equations. In

this paper we have considered a numerical method for the fractional diffusion equation, and related equa-

tions. A centred difference approximation is used to discretize the spatial Laplacian, the backwards Euler

approximation is used to discretize the first order time derivative and a standard discretization (known as

the L1 scheme [20]) is used to approximate the fractional order time derivative. This leads to a fully implicit

finite difference scheme.

An explicit method for solving the fractional diffusion equation was developed recently by Yuste and

Acedo [21]. Their method employs the Grünwald–Letnikov definition for the fractional derivative in
contrast to the Riemann–Liouville definition we use. An explicit method involving the Riemann–Liouville

definition would have difficulties at t = 0 because the Riemann–Liouville fractional derivative of a function

which is non-zero at t = 0 is unbounded [22]. This behaviour is reproduced in the L1 scheme. An advantage

of the implicit method is that it is unconditionally stable. The explicit method of Yuste and Acedo [21] is

conditionally stable.

Other finite difference methods that have been developed for fractional partial differential equations

include; explicit and semi-implicit methods for solving partial differential equations with fractional order

spatial derivatives [23]; and an implicit numerical method for solving the fractional wave equation
[24,25]
oy
ot
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: ð5Þ
Fractional order partial differential equations can also be solved numerically after first re-writing them as

integro-differential equations. For example
ou
ot

þ
Z t

0

b t � sð ÞAuðsÞ ds ¼ f ðtÞ ð6Þ
reduces to the fractional wave equation if:
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Au ¼ � o2u
ox2

; ð7Þ

bðtÞ ¼ tc�1

CðcÞ ð8Þ
and f(t) = 0. In this formulation finite element methods have been used to discretize the spatial derivatives

and the time derivative has been discretized using either the standard Euler backward difference [26–28],

second order backward difference [28,29] or Crank–Nicolson methods [27,28]. The integrals in these

schemes are evaluated using numerical quadrature such as the right-handed rectangle rule [28,29], trapezoi-

dal rule [28], mid-point rule [29], or convolution quadrature [27,30]. It is interesting to note that the quad-
rature weights of the convolution quadrature scheme are similar to the weights of the Grünwald–Letnikov

definition of the fractional derivative [22]. More recently, a numerical scheme that employs a Laplace trans-

form to remove the need to evaluate the convolution integral has been developed [31]. This method is rap-

idly convergent for linear equations involving fractional derivatives or integrals but not for nonlinear

problems, such as fractional reaction–diffusion equations, to which our implicit method can also be applied

[32].

The plan of the remainder of this paper is as follows. In the following section we develop the governing

equations for the implicit method. The accuracy of the method is determined in Section 3. The stability of
the method is determined in Section 4 and the paper concludes with a summary in Section 5.
2. Numerical method

In this section we introduce our implicit numerical method for solving the fractional diffusion equation
oy
ot

¼ o1�c

ot1�c

o2y
ox2

; 0 6 x 6 L ð9Þ
with the zero flux boundary conditions:
oy
ox

����
x¼0

¼ 0; t P 0; ð10Þ

oy
ox

����
x¼L

¼ 0; t P 0 ð11Þ
and the initial condition
yðx; 0Þ ¼ gðxÞ; 0 6 x 6 L: ð12Þ

In the following we take an equally spaced 1-D mesh of N points for the spatial domain, 0 6 x 6 L, and

M time steps for the temporal domain. We shall denote the spatial grid points by
xi ¼ ði� 1ÞDx; 1 6 i 6 N ; ð13Þ

and the temporal grid points by
tk ¼ ðk � 1ÞDt; 1 6 k 6 M ; ð14Þ
where the grid spacing is simply Dx = L/(N � 1) in the spatial domain and Dt in the temporal domain.

To approximate the fractional diffusion equation we use the Euler backward difference for the first order

time derivative
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oyðxi; tkþ1Þ
ot

� ykþ1
i � yki
Dt

þOðDtÞ; ð15Þ
where we have denoted yðxi; tkÞ � yki . The second order spatial derivative is approximated using the second

order centred difference scheme evaluated at the next time step
o2yðxi; tkþ1Þ
ox2

� ykþ1
iþ1 � 2ykþ1

i þ ykþ1
i�1

Dx2
þOðDx2Þ: ð16Þ
The fractional derivative was approximated using the L1 scheme (Oldham and Spanier [20]) which is

valid for 0 < c 6 1. Explicitly, the L1 approximation for the fractional derivative of order 1 � c with respect

to time at t = tk+1 is given by [20]
o
1�cyðxi; tkþ1Þ

ot1�c
� Dtc�1

C 1þ cð Þ
cy1i
k1�c þ

Xk
l¼1

ylþ1
i � yli

� �
k � lþ 1ð Þc � k � lð Þcð Þ

( )
; ð17Þ
where Dt is the step length in time and C(x) is the Gamma function. Note the L1 scheme assumes equally

spaced time steps, i.e.
yðtkÞ ¼ yððk � 1ÞDtÞ; k ¼ 1; 2; . . . ð18Þ
but it could be applied to variable time steps.

Our implicit numerical method for the fractional diffusion equation is determined by the finite difference

equations (1 < i < N)
ykþ1
i 1þ 2qð Þ � qykþ1

iþ1 � qykþ1
i�1 ¼ yki 1þ 2qð Þ � qykiþ1 � qyki�1 þ q

c

k1�c ry1i

þ q
Xk�1

l¼1

rylþ1
i �ryli

� �
k � lþ 1ð Þc � k � lð Þcð Þ; ð19Þ
where q = Dtc/Dx2C(1 + c) and
ryki ¼ ykiþ1 � 2yki þ yki�1: ð20Þ
The zero flux boundary conditions are implemented after using a second order difference scheme for the
spatial derivative
oyi
ox

¼ ykiþ1 � yki�1

2Dx
; ð21Þ
so that yk0 ¼ yk2 and ykNþ1 ¼ ykN�1. Thus we have a system of N equations in N unknowns to be solved at each
time step. Note we need to store the value ryki for all k. The finite difference equations can be written in the

form
Ay
�
kþ1 ¼ Ay

�
k þ f

�
; ð22Þ
where A is a constant tridiagonal matrix and
fi ¼ q
c

k1�c ry1i þ q
Xk�1

l¼1

rylþ1
i �ryli

� �
k � lþ 1ð Þc � k � lð Þcð Þ: ð23Þ
To update the solution we require only to solve
ADy
�

¼ f
�

ð24Þ
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and use the updating formula
y
�
kþ1 ¼ y

�
k þ Dy

�
: ð25Þ
Since A is constant with respect to time its decomposition is only required once.

Most of the computation and storage required in the above method is the evaluation of the fractional

derivative. The approximations of the second derivative, ryki , need to be stored for each grid point, i,

and time step, k, to be available for the summation in the evaluation in Eq. (23). The summation itself

requires considerable computational effort which increases with each time step. The number of time steps

becomes a significant problem when the duration of the numerical simulation becomes large but a small
time step is required for accuracy. This is not a serious problem for the linear fractional diffusion equation

where the solution quickly decays to zero however it does present problems for simulations involving sys-

tems of nonlinear fractional reaction–diffusion equations where the solutions may not decay quickly to zero

but may instead display Turing patterns [5,32]. These problems become even more severe in higher dimen-

sions than the 1-D case considered in this paper.
3. Accuracy

In this section we evaluate the accuracy of our implicit numerical scheme. First we determine the accu-

racy of the L1 scheme [20]
d1�cyðtkþ1Þ
dt1�c

� Dtc�1

C 1þ cð Þ
cy1

k1�c þ
Xk
l¼1

ylþ1 � yl
� �

k � lþ 1ð Þc � k � lð Þcð Þ
( )

; ð26Þ
where yk = y((k � 1)Dt) and 0 < c 6 1 and we assume that y(t) can be expanded in a Taylor series around

t = 0 with an integral remainder term, i.e.
yðtÞ ¼ yð0Þ þ ty 0ð0Þ þ
Z t

0

y00ðsÞðt � sÞ ds: ð27Þ
If we apply the fractional differential operator to this expression we find
d1�cy
dt1�c

¼ yð0Þ d
1�cð1Þ
dt1�c

þ y 0ð0Þ d
1�cðtÞ
dt1�c

þ d1�c

dt1�c

Z t

0

y00ðsÞðt � sÞ ds; ð28Þ
where
d1�cð1Þ
dt1�c

¼ tc�1

CðcÞ ð29Þ
and
d1�cðtÞ
dt1�c

¼ tc

Cð1þ cÞ : ð30Þ
To evaluate the fractional derivative of the convolution
Z t

0

y 00ðsÞðt � sÞ ds; ð31Þ
we use the general result [22]
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d1�c

dt1�c

Z t

0

f ðsÞKðt � sÞ ds ¼
Z t

0

d1�cðKÞ
ds1�c

ðsÞf ðt � sÞ dsþ lim
s!þ0

f ðt � sÞ d
�cðKÞ
ds�c

ðsÞ ð32Þ
and so we find
d1�c

dt1�c

Z t

0

y 00ðsÞðt � sÞ ds ¼
Z t

0

d1�cðsÞ
ds1�c

ðsÞy00ðt � sÞ dsþ lim
s!þ0

y 00ðt � sÞ d
�cðsÞ
ds�c

ðsÞ; ð33Þ
which simplifies to
d1�c

dt1�c

Z t

0

y 00ðsÞðt � sÞ ds ¼
Z t

0

y00ðsÞ ðt � sÞc

Cð1þ cÞ ds: ð34Þ
Eq. (28) can then be expressed as
d1�cðyÞ
dt1�c

¼ tc�1

CðcÞ yð0Þ þ
tc

Cð1þ cÞ y
0ð0Þ þ 1

Cð1þ cÞ

Z t

0

ðt � sÞcy00ðsÞ ds: ð35Þ
The accuracy of the L1 scheme can be determined by comparing the above result with the result obtained

by applying the L1 scheme approximation of the fractional derivative to Eq. (27). Thus we need to evaluate

the L1 approximations operating on the functions 1, t and the convolution. To simplify the algebra we

rewrite the L1 scheme as
d1�cðyÞ
dt1�c

����
L1

¼ yð0Þtc�1
kþ1

CðcÞ þ Dtc�1

Cð1þ cÞ
Xk
l¼0

wlyððk � lÞDtÞ; ð36Þ
where
wl ¼
1; l ¼ 0;

�kc þ ðk � 1Þc; l ¼ k;

ðlþ 1Þc � 2lc þ ðl� 1Þc; 1 6 l < k:

8><
>: ð37Þ
The application of the L1 scheme operating on y(t) = 1 evaluated at tk+1 = kDt is thus
d1�cð1Þ
dt1�c

����
L1

¼ tc�1
kþ1

CðcÞ þ
Dtc�1

Cð1þ cÞ
Xk
l¼0

wl ð38Þ
which simplifies, with the identity
Xk
l¼0

wl ¼ 0 ð39Þ
to give
d1�cð1Þ
dt1�c

����
L1

¼ tc�1
kþ1

CðcÞ : ð40Þ
We now consider the application of the L1 scheme operating on t
d1�cðtÞ
dt1�c

����
L1

¼ Dtc�1

Cð1þ cÞ
Xk
l¼0

wlðk � lÞDt: ð41Þ
This simplifies using the identities
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Xk�1

l¼0

lwl ¼ kcðk � 1Þ � ðk � 1Þck ð42Þ
and
Xk�1

l¼0

wl ¼ kc � ðk � 1Þc ð43Þ
to give
d1�cðtÞ
dt1�c

����
L1

¼ tckþ1

Cð1þ cÞ : ð44Þ
Note both of these results are identical to the results of the corresponding fractional derivatives of 1 and t at

t = tk+1. Hence any error in the L1 scheme must arise from the error in the application of the L1 scheme to

the convolution term
Z t

0

y 00ðsÞðt � sÞ ds: ð45Þ
Applying the L1 scheme to this term we find
d1�c

dt1�c

Z t

0

y00ðsÞðt� sÞ ds
� �����

L1

¼ tc�1
kþ1

CðcÞ limt!0

Z t

0

y 00ðsÞðt � sÞ dsþ Dtc�1

Cð1þ cÞ
Xk
l¼0

wl

Z ðk�lÞDt

0

y00ðsÞ k � lð ÞDt � sð Þ ds:

ð46Þ
By noting that the limit and the term l = k of the sum are both zero and by breaking the interval of inte-

gration into Dt steps the previous equation can be rewritten as
d1�c

dt1�c

Z t

0

y00ðsÞðt � sÞds
� �����

L1

¼ Dtc�1

Cðcþ 1Þ
Xk�1

l¼0

wl

Xk�l�1

n¼0

Z ðnþ1ÞDt

nDt
y00ðsÞ k � lð ÞDt � sð Þds: ð47Þ
Changing the order of summation we find
d1�c

dt1�c

Z t

0

y00ðsÞðt � sÞds
� �����

L1

¼ Dtc�1

Cð1þ cÞ
Xk�1

n¼0

Z ðnþ1ÞDt

nDt
y 00ðsÞ

Xk�n�1

l¼0

wl k � lð ÞDt � sð Þds: ð48Þ
Now using the identities
Xk�n�1

l¼0

wl ¼ ðk � nÞc � ðk � n� 1Þc ð49Þ
and
Xk�n�1

l¼0

lwl ¼ ðk � nÞcðk � n� 1Þ � ðk � n� 1Þcðk � nÞ: ð50Þ
Eq. (48) simplifies to
d1�c

dt1�c

Z t

0

y00ðsÞðt � sÞds
� �����

L1

¼ Dtc�1

Cð1þ cÞ
Xk�1

n¼0

Z ðnþ1ÞDt

nDt
y 00ðsÞ k � nð Þc nþ 1ð ÞDt � s½ � � k � n� 1ð Þc nDt� s½ �f gds:

ð51Þ
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The error in using the L1 scheme on Eq. (27) compared with the exact value of the fractional derivative

given in Eq. (35) can now be evaluated
d1�cðyÞ
dt1�c

� d1�cðyÞ
dt1�c

����
L1

����
���� ¼

Z kDt

0

y 00ðsÞ ðt � sÞc

Cð1þ cÞ ds�
Dtc�1

Cð1þ cÞ
Xk�1

n¼0

Z ðnþ1ÞDt

nDt
y00ðsÞ k � nð Þc nþ 1ð ÞDt � s½ �f

�����
� k � n� 1ð Þc nDt � s½ �gds

�����; ð52Þ
or equivalently
d1�cðyÞ
dt1�c

� d1�cðyÞ
dt1�c

����
L1

����
���� ¼ Xk�1

n¼0

Z ðnþ1ÞDt

nDt

y 00ðsÞ
Cð1þ cÞ ðt � sÞc � Dtc�1 k � nð Þc nþ 1ð ÞDt � s½ �f

������
� k � n� 1ð Þc nDt � s½ �g�ds

�����: ð53Þ
Now denoting the maximum absolute value of the second derivative by
Mn ¼ max
nDt6s6ðnþ1ÞDt

y 00ðsÞj j; ð54Þ
the error becomes
d1�cðyÞ
dt1�c

� d1�cðyÞ
dt1�c

����
L1

����
���� 6Xk�1

n¼0

Mn

Cð1þ cÞ

Z ðnþ1ÞDt

nDt
ðt � sÞc � Dtc�1 k � nð Þc nþ 1ð ÞDt � s½ �f
�����

� k � n� 1ð Þc nDt � s½ �g�ds
�����: ð55Þ
The remaining integrals are straightforward so that
d1�cðyÞ
dt1�c

� d1�cðyÞ
dt1�c

����
L1

����
���� 6Xk�1

n¼0

MnDt1þc

2Cð2þ cÞ k � nð Þc 2 k � n� 1ð Þ þ 1� cð Þ � k � n� 1ð Þc 2 k � nð Þ � 1þ cð Þ½ �:

ð56Þ

If we now denote the maximum value of Mn by M and simplify the summation we arrive at
d1�cðyÞ
dt1�c

� d1�cðyÞ
dt1�c

����
L1

����
���� 6 MDt1þc

2Cð2þ cÞ nðk; cÞ; ð57Þ
where
nðk; cÞ ¼ kc 2 k � 1ð Þ þ 1� c½ � � 2 1þ cð Þ
Xk�1

n¼1

nc: ð58Þ
It immediately follows from Eq. (58) that n(k,0) = 1 and n(k,1) = 0 so the error in taking the first order

derivative (c = 0) is of order Dt and the L1 scheme is the identity operator for c = 1. Note the function

n(k,c) can be rewritten in terms of the Riemann Zeta function f(�c) for large k and c < 1
nðk; cÞ � �2ð1þ cÞfð�cÞ � ð1þ cÞc
6

kc�1 þOðkc�3Þ: ð59Þ
The function n(k,c) is then bounded by
nðk; cÞ 6 �2ð1þ cÞfð�cÞ 6 3� 2c
3

ð60Þ
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for 0 6 c 6 1 which shows the L1 scheme approximation is O(Dt1+ c) for functions that can be expressed as

a Taylor series. The error in evaluating the fractional derivative of the second spatial derivative is then
Fig. 1.

Error i

where
o1�c

ot1�c

o2y
ox2

� o1�c

ot1�c

d2yj
Dx2

�����
L1

�����
����� 6 o1�c

ot1�c

o2y
ox2

� o1�c

ot1�c

o2y
ox2

����
L1

����
����þ o1�c

ot1�c

o2y
ox2

����
L1

� o1�c

ot1�c

ryi
Dx2

����
L1

����
����

6
MDt1þc

2Cð2þ cÞ n k; cð Þ þ d1�cðM�Þ
dt1�c

����
L1

����
����Dx2; ð61Þ
where:
ryi ¼ yiþ1 � 2yi þ yi�1; ð62Þ

M ¼ max
06t6kDt

o
4y

ox2ot2

����
���� ð63Þ
and
M� ¼ 1

12
max

o
4y
ox4

����
����: ð64Þ
As a simple test of the above error estimates for the accuracy of the L1 scheme we have compared results

from a numerical implementation of the L1 scheme with the exact fractional calculus results for the test

function y(t) = tm. The difference between these results at t = 1 is plotted as a function of Dt on a log–log

plot in Fig. 1. The left figure shows the error in the case m = 2 for various values of c. The straight lines

in this figure have slopes of 1 + c in agreement with the theoretical analysis. The right figure shows the error

in the case c = 0.5 for different values of m P 0.5. The straight lines all have a slope of 1 + 1/2 so that we
again recover the theoretical result that the error is O(Dt1+ c) even though for values of m < 1 the Taylor
Comparison of the absolute error, e, in using the L1 scheme to evaluate the fractional derivative of order 1 � c of tm at t = 1. (a)

n calculation for m = 2.0 and c = 0.1(0.1)0.9 where c decreases in the direction of the arrow. (b) Error in calculation for c = 0.5

the direction of the arrow indicates the order of m = 0.9, 0.5, 1.5, 2.0, 2.5. For small Dt the error is of O(Dt1+ c).
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expansion in Eq. (27) does not hold and thus the theoretical error estimate does not necessarily hold in this

case.

In summary, the overall accuracy of our implicit numerical method is O(Dx2) in space and O(Dt1+ c) in

the fractional time derivative.

We have further investigated the accuracy of our numerical scheme by making direct comparisons be-
tween numerical simulations and algebraic solutions for the fractional diffusion equation on a fixed domain.

These comparisons provide estimates of the global error as a function of Dt.
The solution to the fractional diffusion equation on a fixed domain can be evaluated using separation of

variables in terms of the Mittag–Leffler function, Ec(z), defined as (see [22])
EcðzÞ ¼
X1
k¼0

zk

C ck þ 1ð Þ : ð65Þ
In the case of zero flux boundary conditions the solution is given by
y x; tð Þ ¼
X1
n¼0

c�n cos
np
L
x

� �
Ec � n2p2

L2
tc

� �
; ð66Þ
where:
c�0 ¼
1

L

Z L

0

gðsÞds; ð67Þ

c�n ¼
2

L

Z L

0

gðsÞ cos np
L
s

� �
ds ð68Þ
and
gðxÞ ¼ yðx; 0Þ: ð69Þ

To further investigate the accuracy of our numerical scheme we tested it on the fractional diffusion equation

with the initial condition
yðx; 0Þ ¼ cosð2pxÞ; 0 6 x 6 1 ð70Þ
and zero flux boundary conditions
oy
ox

����
x¼0

¼ oy
ox

����
x¼1

¼ 0; t P 0: ð71Þ
The algebraic solution in this case simplifies to (see also [1])
yðx; tÞ ¼ cosð2pxÞEc �4p2tc
� �

: ð72Þ
For the special cases c = 1/2 and c = 1 the Mittag–Leffler function simplifies further and the solution given

in Eq. (72) can be written as follows:

(i) For c = 1/2:
yðx; tÞ ¼ cosð2pxÞe16p4terfc 4p2
ffiffi
t

p� �
; ð73Þ

yðx; tÞ � cosð2pxÞð1� 8p3=2
ffiffi
t

p
þ 16p4t � 256

3
p11=2t3=2 þOðt2ÞÞ; ð74Þ
where erfc(z) is the complementary error function.
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(ii) For c = 1 (standard diffusion):
Fig. 2
yðx; tÞ ¼ cosð2pxÞe�4p2t; ð75Þ

yðx; tÞ � cosð2pxÞð1� 4p2t þOðt2ÞÞ: ð76Þ
We have compared these solutions with the results from numerical simulations based on the implicit numer-

ical scheme outlined in Section 2. In Fig. 2 we show the absolute error in the predicted value of y(0,0.1) as a

function of the time step Dt for the special cases c = 1/2 and c = 1. We see the absolute error increases lin-

early for c = 1 (lower curve in this figure) and like Dt1/2 for c = 1/2 (upper curve).

Clearly the absolute error in the numerical solution of the fractional diffusion equation cannot be
accounted for solely on the basis of the preceding local error analysis. The local error of the Euler

approximation, O(Dt), is larger than the local error in the L1 approximation, O(Dt1+ c). However the

global error in the solution has a c dependence, O(Dt) for c = 1 and O(Dt1/2) for c = 1/2, suggesting that

the accumulation of errors from the L1 approximation is greater than the accumulation of errors from

the Euler approximation. The following comments are also relevant in this context. The derivative of the

exact solution
oyðx; tÞ
ot

¼ cosð2pxÞ
X1
k¼1

�4p2ð Þk

CðckÞ tck�1 ð77Þ
0
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. Absolute error in the calculation of y(0,0.1) for c = 1/2 (upper curve) and c = 1 (lower curve) for varying time step size, Dt.
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is unbounded as t ! 0+ for 0 < c < 1. Hence the solution y(x,t) cannot be expressed as a Taylor series about

t = 0 as was assumed in the local error analysis. The singularity at t = 0 results in a large initial error in the

Euler scheme which is further propagated (via the memory effect) in the L1 scheme.
4. Stability

In this section we have considered the stability of the implicit numerical method described in Section 2

for solving the fractional diffusion equation
oy
ot

¼ o1�c

ot1�c

o2y
ox2

ð78Þ
for 0 < c 6 1. The numerical solution is governed by the difference equations
ykþ1
j � ykj ¼

dDtc

Cð1þ cÞDx2

(
c

k1�c y1jþ1 � 2y1j þ y1j�1

� �

þ
Xk
l¼1

ak�lþ1ðcÞ ylþ1
jþ1 � 2ylþ1

j þ ylþ1
j�1

� �
� yljþ1 � 2ylj þ ylj�1

� �� �)
; ð79Þ
where ykj � yððj� 1ÞDx; ðk � 1ÞDtÞ and
asðcÞ ¼ sc � s� 1ð Þc: ð80Þ
To investigate the stability of this system we set ykj ¼ dkeiqjDx where q is a real spatial wave number and let

q = Dtc/C(1 + c)Dx2 in Eq. (79), then
dkþ1e
iqjDx � dke

iqjDx ¼ q
c

k1�c d1e
iqðjþ1ÞDx � 2d1e

iqjDx þ d1e
iqðj�1ÞDx� �


�
Xk
l¼1

ak�lþ1ðcÞ dlþ1e
iqðjþ1ÞDx � 2dlþ1e

iqjDx þ dlþ1e
iqðj�1ÞDx� ��

� dle
iqðjþ1ÞDx � 2dle

iqjDx þ dle
iqðj�1ÞDx� ���

: ð81Þ
The numerical method is unconditionally stable if jdk+1/dkj 6 1 for all k, q, q, Dx and c.
Dividing Eq. (81) by eiqjDx and using the identity
eiqDx � 2þ e�iqDx ¼ �4sin2 qDx
2

� �
; ð82Þ
we arrive at the difference equation
dkþ1 ¼ dk � 4qsin2 qDx
2

� �
c

k1�c d1 þ
Xk
l¼1

ak�lþ1ðcÞ dlþ1 � dlð Þ
( )

: ð83Þ
If kP 2 we can rearrange this expression for the ratio
dkþ1

dk
¼ 1� V a2ðcÞ � V

d1
dk

lkðcÞ þ
Xk�1

l¼2

bk�lþ2ðcÞ
dl
dk

( )
; ð84Þ
where:
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V ¼ U
1þ U

; ð85Þ

U ¼ 4qsin2 qDx
2

� �
; ð86Þ

bsðcÞ ¼ asðcÞ � as�1ðcÞ ¼ sc � 2 s� 1ð Þc þ s� 2ð Þc; ð87Þ

lkðcÞ ¼
c

k1�c � akðcÞ ¼
c

k1�c � kc � k � 1ð Þcð Þ: ð88Þ
The sum in Eq. (84) is only evaluated if k P 3 otherwise it is taken to be zero.
We first consider some special cases. If k = 1 then from Eq. (83) we have
d2
d1

¼ 1� cV 6 1: ð89Þ
If c = 1 (standard diffusion) we find
d2
d1

¼ 1� V ð90Þ
for k = 1 and
dkþ1

dk
¼ 1� V a2ð1Þ � V

d1
dk

lkð1Þ þ
Xk�1

l¼1

bk�lþ2ð1Þ
dl
dk

( )
¼ 1� V ð91Þ
for k P 2; since lk(1) = bk+1(1) = 0 and a2(1) = 1. Thus
dkþ1

dk
¼ 1� V 6 1 8k ð92Þ
and so in the case of standard diffusion we recover the well known result that the implicit method is uncon-

ditionally stable.

If c = 0 then we find
dkþ1

dk
¼ 1 ð93Þ
for all k P 1; since lk(0) = bk+1(0) = 0 and a2(0) = 0.

It remains to consider 0 < c < 1. In Fig. 3 we have plotted the ratio dk+1/dk for k = 1,2,3,4 and k = 10

over a range of c. Results are shown for two values of V. With these k values we observe the following pat-

tern of behaviour: (i) dk+1/dk is a monotonic decreasing function of c; (ii) dk+1/dk 6 1 for all c; (iii) dk+1/dk
P dk/dk� 1.

We now establish through series expansions that dk+1/dk 6 1 for all c in the range 0 < c � 1 and all k.

Note that if c = 0 then
dj
djþ1

¼ 1 8j ð94Þ
and thus
dl
dk

¼
Yk�1

j¼l

dj
djþ1

¼ 1 8l < k: ð95Þ



Fig. 3. Comparison of the ratios dk+1/dk for k = 1,2,3,4 and k = 10 with (a) V = 0.1, (b) V = 0.9. The straight dashed line is a plot of

1 � cV/10 versus c. The arrow indicates the direction of increasing k. In each of these plots, dk+1/dk > dk/dk� 1. Note the different

vertical scales in (a) and (b).
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Then without loss of generality we have
dl
dk

¼ 1þOðcÞ: ð96Þ
We also have the expansions:
akðcÞ ¼ c log k � c logðk � 1Þ þOðc2Þ; ð97Þ

jlkðcÞj ¼ c log k � c logðk � 1Þ � c
k
þOðc2Þ; ð98Þ

jbsðcÞj ¼ 2c logðs� 1Þ � c logðs� 2Þ � c logðsÞ þOðc2Þ: ð99Þ

We now substitute these expansions, Eqs. (96)–(99) into Eq. (84) and simplify to obtain the result
dkþ1

dk
¼ 1� cV

k
þOðc2Þ: ð100Þ
Thus dk+1/dk 6 1 for k finite and c sufficiently small.

We have not been able to prove algebraically that the method is unconditionally stable for all c in the

range 0 < c < 1 but the pattern of results in Fig. 3 and the series expansions above are consistent with
1� cV 6
dj
dj�1

6 1� c
V

j� 1
; j ¼ 2; 3; . . . k: ð101Þ
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It is possible to use the above bounds inductively to find additional bounds on dk+1/dk. First we note the

following results from Eq. (101):
dj
dj�1

6 1; ð102Þ

d1
dk

¼ dl
dk

Yl�1

j¼1

dj
djþ1

P
dl
dk

; ð103Þ

d1
dk

¼
Yk�1

j¼1

dj
djþ1

6
1

1� cV

� �k�1

: ð104Þ
It now follows from Eqs. (101)–(103) and Eq. (84) together with lk 6 0 and bk� l+2 6 0 that
dkþ1

dk
6 1� V a2ðcÞ þ V

d1
dk

jlkðcÞj þ
Xk�1

l¼2

jbk�lþ2ðcÞj
 !

: ð105Þ
To simplify this further we sum over l:
Xk�1

l¼2

bk�lþ2ðcÞ ¼
Xk�1

l¼2

ak�lþ2ðcÞ � ak�lþ1ðcÞ; ð106Þ

Xk�1

l¼2

bk�lþ2ðcÞ ¼
Xk�2

l¼1

ak�lþ1ðcÞ �
Xk�1

l¼2

ak�lþ1ðcÞ; ð107Þ

Xk�1

l¼2

bk�lþ2ðcÞ ¼ akðcÞ � a2ðcÞ ð108Þ
and use the definition for lk(c) to obtain the identity
a2ðcÞ � jlkðcÞj �
Xk�1

l¼2

jbk�lþ2ðcÞj ¼
c

k1�c : ð109Þ
We thus have the bound
dkþ1

dk
6 1� V a2ðcÞ þ V

d1
dk

a2ðcÞ �
c

k1�c

� �
: ð110Þ
It is also possible to find more restrictive bounds including dk+1/dk < 1 for a restricted range of c but more

generally we have found it necessary to explore numerical results for the ratios. We have undertaken exten-

sive numerical simulations of the difference equations, Eqs. (84) and (89) with d1 = 1,U = 106, and for

various values of c. Results from these simulations are shown in Figs. 4 and 5.
In Fig. 4 we have made a Log–Log plot of the value dk versus k for k = 1,2, . . . ,1000 and we find that the

long term behaviour is O(k�c). This long term behaviour is similar to the long-term behaviour of the

Mittag–Leffler Function [33]
Ec �q2tc
� �

� t�c

Cð1� cÞq2 ; ð111Þ
which describes the decay of the Fourier modes, q, of the fractional diffusion equation [33]. Since the
stability of the implicit numerical scheme is in essence governed by the decay of the discrete Fourier modes



Fig. 4. Log–Log plot of the numerical estimates of dk for k = 1,2, . . . ,1000 and for c = 0.1(0.1)0.9 decreasing in value in the direction of

the arrow.

Fig. 5. Comparison of the ratios dk+1/dk for k = 2,3, . . . ,100 and for values of c = 0(0.1)0.9 decreasing in the direction of the arrow.
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in a discrete Fourier transform of the fractional diffusion equation the correspondence between the O(k�c)

and O(t�c) decay rates is further evidence in support of the stability of the numerical method.
Finally, in Fig. 5 we have plotted the ratio dk+1/dk for k = 1,2, . . . ,100 for various values of c and we find

that in all cases this ratio is indeed less than one. Here, we have omitted in the plot values of k > 100 simply

to distinguish the behaviour of different c values for small k. For larger values of k the ratio remains

bounded from above by one (not shown).
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5. Summary

In this paper we have investigated the stability and accuracy of an implicit numerical method for solving

the fractional diffusion equation
oy
ot

¼ o1�c

ot1�c

o2y
ox2

; ð112Þ
where 0 < c 6 1. We have shown that the method has accuracy O(Dx2) in the spatial grid size and O(Dt1+ c)

in the fractional time step. We have also provided algebraic and numerical evidence that the method is

unconditionally stable. These results complement other recent studies on the stability and accuracy of finite

difference schemes for anomalous diffusion modelled with fractional partial differential equations [23,21].

The numerical methods that we have developed in this paper can also be applied to the fractional

Fokker–Planck equation [3] and to fractional reaction–diffusion equations [4,5] where it has the same accu-

racy and stability.

A systematic study of the global accuracy of our implicit method remains an area for future research.
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